Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
Visintainer, Michael Renê Mix |
Orientador(a): |
Braun, Alexandre Luis |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/241974
|
Resumo: |
O presente trabalho tem como objetivo desenvolver uma formulação de acoplamento para a simulação numérica da interação fluido-estrutura-solo em aplicações da Engenharia do Vento. Com esta ferramenta pretende-se avaliar a influência da interação solo-fundação no comportamento aeroelástico de estruturas. Neste trabalho, o modelo numérico é desenvolvido a partir de um esquema de acoplamento particionado, no qual os meios físicos envolvidos são resolvidos de forma sequencial, podendo apresentar métodos de discretização e solução independentes. Adota-se o Método dos Elementos Finitos (MEF) para a discretização espacial de todos os meios físicos, onde elementos hexaédricos lineares com integração reduzida e controle de modos espúrios são empregados. As equações fundamentais do escoamento são descritas cinematicamente através de uma formulação arbitrária lagrangiana-euleriana (ALE) e resolvidas numericamente usando o esquema explícito de dois passos de Taylor-Galerkin, enquanto que a Simulação de Grandes Escalas (LES) é empregada para o tratamento de escoamentos turbulentos. A estrutura e o solo são considerados como meios deformáveis elastoplásticos, sendo empregada uma abordagem corrotacional para lidar com as não linearidades física e geométrica. A equação de equilíbrio dinâmico é resolvida no tempo através do esquema implícito de Newmark adaptado ao método α-generalizado e elementos infinitos são empregados no contorno do domínio computacional do solo para evitar a reflexão de ondas para a região de interesse. A transferência de esforços entre o solo e a estrutura é realizada empregando-se um algoritmo de contato tridimensional baseado no método da penalidade que permite a separação e deslizamento entre os meios. Devido a elevada demanda computacional, a abordagem CUDA é empregada utilizando-se um modelo híbrido de paralelização para acelerar o processamento das simulações. Verificou-se durante as análises aeroelásticas que a resposta estrutural foi afetada pela inserção do solo nos modelos, apresentando amplitudes de deslocamento longitudinal superiores aos demonstrados pelos modelos de estrutura apoiada em uma base rígida. |