Recuperação de informação em sistemas de recomendação : análise da interação mediada por computador e dos efeitos da filtragem colaborativa na seleção de itens no website da Amazon.com

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Consoni, Gilberto Balbela
Orientador(a): Primo, Alessandra Teixeira
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/97844
Resumo: Como os interagentes selecionam conteúdo sob a influência dos sistemas de recomendação digital é o problema de pesquisa apresentado nesta tese. A abundância de dados nos repositórios digitais exige sistemas de recuperação de informação eficazes para auxiliar o usuário na gestão e na seleção de itens de informação. Desta forma, o objetivo geral deste trabalho pretende investigar o comportamento dos interagentes na seleção de itens frente ao sistema de recomendação digital do website da loja virtual Amazon. O sistema de recomendação da Amazon foi investigado com a intenção de se compreender como o usuário utiliza um sistema automatizado de listas de referências em forma de recomendação de conteúdo. O funcionamento dos sistemas de recomendação é fundamentado com a proposta de conhecer suas características e funcionalidades. Como o problema de pesquisa tem em sua temática a recomendação de itens de informação, tornou-se necessário compreender como os usuários interagem com os sistemas para perceber como as recomendações são feitas. O aporte teórico desta pesquisa aproxima os estudos dos campos da Informação e da Comunicação. As técnicas de pesquisas aplicadas envolvem métodos de pesquisa qualitativa. Ao distinguir as recomendações a partir das interações reativas e mútuas dos usuários, propõe-se nesta tese a Matriz de Recomendações de Itens de Informação constituída pelos seguintes quadrantes: Recomendações Objetivas Digitais; Recomendações Subjetivas Digitais; Recomendações Objetivas Analógicas e Recomendações Subjetivas Analógicas. Digitais; Recomendações Objetivas Analógicas e Recomendações Subjetivas Analógicas. Para analisar o comportamento dos interagentes no uso dessas recomendações, a estratégia metodológica aplicou entrevista em profundidade e observação direta. Os resultados desta pesquisa consideram que o internauta recorre a mais de um tipo de recomendação quando a seleção envolve conteúdo significativo, enquanto segue passivamente sistemas de recomendações automatizados quando o custo pessoal diretamente aplicado é baixo ou inexistente.