Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Helder, Victor Gomes |
Orientador(a): |
Filomena, Tiago Pascoal |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/224861
|
Resumo: |
Credit scoring possui um papel fundamental para instituições financeiras no processo de análise para concessão de crédito. Nesse sentido, técnicas de machine learning têm sido utilizadas para desenvolver modelos de credit scoring, uma vez que elas buscam reconhecer padrões existentes em bases de dados contendo o histórico de tomadores de crédito, e assim podem inferir quais indivíduos terão mais propensão a cometer um calote (default). Entretanto, essas bases de dados comumente apresentam um grande número de variáveis, algumas das quais podem ser ruidosas, o que prejudica a análise. No presente trabalho, é proposta uma técnica de seleção de variáveis baseada em um conceito de vizinhança variável, chamado VNS. A aplicabilidade do método é avaliada em conjunto com sete das principais técnicas utilizadas para fazer predição de default em problemas de análise de crédito. Seu desempenho foi comparado com a seleção de variáveis obtida pelo conhecido método estatístico PCA. Os resultados indicam performance superior do VNS na maior parte dos testes aplicados, sugerindo a robustez do método. |