Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Rigolli, Bruna |
Orientador(a): |
Segatto, Cynthia Feijó |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/10183/141478
|
Resumo: |
Neste trabalho, focamos nossa atenção na solução das equações SN em uma placa por um método não espectral. Para este fim, depois de escrevermos as equações SN em sua forma matricial, decompomos a matriz resultante da equação matricial diferencial linear ordinária de primeira ordem como a soma de sua diagonal principal mais seu complemento. Este procedimento nos permite a construção de um sistema de equações matriciais diferenciais, os quais possuem uma fonte desconhecida, a qual corrige o fluxo com informação contida na matriz complementar. Devemos observar que a primeira equação deste sistema recursivo é escolhida sem termo fonte, e por consequência sua solução é conhecida, como a exponencial da matriz diagonal. Para as equações restantes, nós avaliamos o termo fonte desconhecido através da solução da equação anterior do sistema recursivo. Nós também assumimos que as condições iniciais satisfazem as condições de contorno do problema original enquanto as equações restantes devem satisfazer condições de contorno homogêneas. O número de equações no sistema recursivo é escolhido de forma a obter uma precisão preescrita. |