Versatilidade da técnica MEIS na caracterização de nanomateriais e dispositivos avançados

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Trombini, Henrique
Orientador(a): Morais, Jonder
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/10183/204532
Resumo: A nanotecnologia está presente em diversos setores industriais como cosmético, automotivo, telecomunicação, saúde, alimentação, entre outros. O número de publicações e patentes associadas à nanotecnologia cresce a cada ano e seu faturamento impacta cada vez mais o mercado mundial. A caracterização de materiais e dispositivos em escala nanométrica é um enorme desafio, o qual afeta diretamente o avanço científico e tecnológico dessas estruturas. O uso da técnica de espalhamento de íons a energias intermediárias (MEIS) na caracterização de nanoestruturas vem crescendo, devido sua capacidade de determinar com resolução subnanométrica composições elementares e perfil de concentrações. Essa técnica pode ser utilizada como ferramenta adicional para caracterização da forma, da composição, da distribuição de tamanho e da estequiometria de nanopartículas (NPs). Além disso, técnicas de espalhamento de íons e elétrons fornecem o perfil elementar em profundidade em termos do produto entre a espessura e a densidade. Através do uso de feixes moleculares, a técnica MEIS é única para quantificar espessuras e densidades independentemente. Neste trabalho, aplicamos a técnica MEIS na caracterização de dispositivos e materiais avançados. Para isso, utilizamos a técnica MEIS de três maneiras distintas: cartografia MEIS, MEIS convencional e explosão Coulombiana. A cartografia MEIS foi utilizada para analisar a ausência de um centro de simetria no cristal de fosfeto de gálio (GaP) e determinar sua completa orientação cristalográfica. Através do MEIS convencional determinamos a distribuição de dopantes e as principais dimensões de um transistor tridimensional. Por último, utilizamos a explosão Coulombiana para quantificar a espessura e a densidade absoluta de uma camada de dióxido de silício (SiO2) crescida devido a um processo de limpeza realizado após uma implantação de arsênio (As) via plasma. Além disso, foi obtido o perfil em profundidade do As. Assim, utilizamos cada potencialidade da técnica MEIS para mostrar sua abrangência. Esses resultados mostram que a versatilidade da técnica MEIS permite caracterizar materiais e dispositivos avançados abrindo novas perspectivas para o uso de feixe de íons e moléculas na caracterização nanométrica.