Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Nottar, Luiz Alberto |
Orientador(a): |
Anzanello, Michel José |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/97236
|
Resumo: |
Esta tese apresenta uma sistemática de seleção dos especialistas mais consistentes e dos fatores de ajuste mais relevantes com vistas ao aprimoramento da acurácia da previsão de demanda gerada por métodos quantitativos. Para tanto, são testados sete modelos quantitativos: Médias Móveis (MM-3, MM-6 e MM-9), Suavização Exponencial Simples e Dupla e o modelo de Holt-Winters multiplicativo e aditivo. O modelo utilizado na previsão quantitativa foi aquele que gerou a melhor aderência aos dados e acurácia preditiva com base nos indicadores R2 e Erro Percentual Médio Absoluto (MAPE), respectivamente, extraídos mediante a quebra da série histórica na proporção 80% (banco de treino) e 20% (banco de teste) para cada produto. Com base nesse critério, tanto o leite UHT quanto o queijo mussarela foram modelados através da Suavização Exponencial Dupla (SED). Na sequência, especialistas e fatores utilizados para ajuste qualitativo da demanda foram selecionados de forma a reter somente os especialistas mais consistentes e os fatores mais influentes para tal fim. O método reteve os 5 especialistas mais consistentes dos 15 inicialmente entrevistados. Dos 23 fatores iniciais, apenas os 13 mais representativos foram retidos. Através da previsão corrigida para o leite UHT, o MAPE foi reduzido de 14,29% para 6,44%. Já previsão ajustada do queijo mussarela possibilitou reduzir o MAPE de 15,25% para 8,72%. |