Metadata extraction from scientific documents in PDF

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Souza, Alan Pinto
Orientador(a): Heuser, Carlos Alberto
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
PDF
Link de acesso: http://hdl.handle.net/10183/108005
Resumo: A maioria dos artigos científicos estão disponíveis no formato PDF. Este padrão permite a geracão de metadados que são inclusos dentro do documento. Porém, muitos autores não definem esta informação, fazendo esse recurso inseguro ou incompleto. Este fato tem motivado pesquisa que busca extrair metadados automaticamente. A extração automática de metadados foi classificada como uma das tarefas mais desafiadoras na área de engenharia de documentos. Este trabalho propõe Artic, um método para extração de metadados de artigos científicos que aplica um modelo probabilístico em duas camadas baseado em Conditional Random Fields. A primeira camada visa identificar as secões principais com possíveis metadados. Já a segunda camada identifica, para cada secão, o metadado correspondente. Dado um PDF contendo um artigo científico, Artic extrai título, nome dos autores, emails, afiliações e informações sobre a conferência onde o paper foi publicado. Os experimentos usaram 100 artigos de conferências variadas. Os resultados superaram a solução estado-da-arte usada como baseline, atingindo uma precisão acima de 99%.