Deep learning macroeconomics

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Guimarães, Rafael Rockenbach da Silva
Orientador(a): Monteiro, Sergio Marley Modesto
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/239533
Resumo: Conjuntos de dados limitados e complexas relações não-lineares estão entre os desafios que podem surgir ao se aplicar econometria a problemas macroeconômicos. Esta pesquisa propõe aprendizagem profunda como uma abordagem para transferir aprendizagem no primeiro caso e para mapear relações entre variáveis no último caso. Várias técnicas de aprendizado de máquina estão incorporadas à estrutura econométrica, mas o aprendizado profundo continua focado na previsão de séries temporais. Primeiramente, aprendizagem por transferência é proposta como uma estratégia adicional para a macroeconomia empírica. Embora os macroeconomistas já apliquem aprendizagem por transferência ao assumir uma dada distribuição a priori em um contexto Bayesiano, estimar um VAR estrutural com restrição de sinal e calibrar parâmetros com base em resultados observados em outros modelos, para citar alguns exemplos, avançar em uma estratégia mais sistemática de transferência de aprendizagem em macroeconomia aplicada é a inovação que estamos introduzindo. Ao desenvolver estratégias de modelagem econômica, a falta de dados pode ser um problema que aprendizagem por transferência pode corrigir. Começamos por apresentar conceitos teóricos relacionados à transferência de aprendizagem e propomos uma conexão com uma tipologia relacionada a modelos macroeconômicos. Em seguida, exploramos a estratégia proposta empiricamente, mostrando que os dados de domínios diferentes, mas relacionados, um tipo de aprendizagem por transferência, ajudam a identificar as fases do ciclo de negócios quando não há comitê de datação do ciclo de negócios e a estimar rapidamente um hiato do produto de base econômica. Em ambos os casos, a estratégia também ajuda a melhorar o aprendizado quando os dados são limitados. A abordagem integra a ideia de armazenar conhecimento obtido de especialistas em economia de uma região e aplicá-lo a outras áreas geográficas. O primeiro é capturado com um modelo de rede neural profunda supervisionado e o segundo aplicando-o a outro conjunto de dados, um procedimento de adaptação de domínio. No geral, há uma melhora na classificação com a aprendizagem por transferência em comparação com os modelos de base. Até onde sabemos, a abordagem combinada de aprendizagem profunda e transferência é subutilizada para aplicação a problemas macroeconômicos, indicando que há muito espaço para o desenvolvimento de pesquisas. Em segundo lugar, uma vez que os métodos de aprendizagem profunda são uma forma de aprender representações, aquelas que são formadas pela composição de várias transformações não lineares, para produzir representações mais abstratas, aplicamos aprendizagem profunda para mapear variáveis de baixa frequência a partir de variáveis de alta frequência. Há situações em que sabemos, às vezes por construção, que existe uma relação entre as variáveis de entrada e saída, mas essa relação é difícil de mapear, um desafio no qual os modelos de aprendizagem profunda têm apresentado excelente desempenho. Os resultados obtidos mostram a adequação de modelos de aprendizagem profunda aplicados a problemas macroeconômicos. Além disso, o aprendizado profundo se mostrou adequado para mapear variáveis de baixa frequência a partir de dados de alta frequência para interpolar, distribuir e extrapolar séries temporais por séries relacionadas. A aplicação dessa técnica em dados brasileiros mostrou-se compatível com benchmarks baseados em outras técnicas.