Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Ávila, Tiago Silva de |
Orientador(a): |
Grande, Pedro Luis |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/150057
|
Resumo: |
A caracterização do strain (deformação) em estruturas cristalinas em filmes finos semicondutores apresenta importantes aplicações tecnológicas, como por exemplo: a formação de defeitos, modificação da estrutura das bandas de condução e valência, e consequentemente modificando a mobilidade de portadores no material. Técnicas de espalhamento com íons de H e He têm sido amplamente empregadas para determinar a deformação, visto que mudanças na canalização ou nas direções de bloqueio podem ser facilmente relacionadas com as deformações no parâmetro de rede. Um novo método, chamado de cartografia-MEIS, é utilizado para determinar a intensidade da deformação estrutural em uma rede cristalográfica. A partir desta técnica, a projeção estereográfica de um único cristal pode ser medida com uma técnica MEIS padrão para um determinado elemento atômico e determinada profundidade. Aqui demonstramos que esta técnica pode ser expandida para caracterizar heteroestruturas SiGe tensas com alta precisão. Em nosso método, não só as principais direções cristalinas são analisados, mas também os índices mais elevados. O método também proporciona sensibilidade elementar com resolução de profundidade e pode ser utilizado em materiais nanoestruturados. A determinação da deformação baseia-se na posição das muitas linhas de bloqueio, ao contrário dos métodos tradicionais, onde duas direções são utilizados. Nós também fornecemos um método para determinar o melhor ajuste nos dados para a deformação na rede, verificando estes resultados a partir de simulações de Monte-Carlo. |