Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Lima Junior, Afonso Valau de |
Orientador(a): |
Becker, Joao Luiz |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/217784
|
Resumo: |
As tendências tecnológicas mais recentes impulsionam uma vasta e crescente quantidade de dados textuais. Modelagem de tópicos é uma ferramenta útil para extrair informações relevantes de grandes corpora de texto. Um modelo de tópico é baseado em um corpus de documentos, descobre os tópicos que permeiam o corpus e atribui documentos a esses tópicos. O modelo de Alocação de Dirichlet Latente (LDA) é o principal, ou mais popular, dos modelos de tópicos probabilísticos. O modelo LDA é condicionado por três parâmetros: os hiperparâmetros de Dirichlet (α and β ) e o número de tópicos (K). A determinação do parâmetro K é extremamente importante e pouco explorada na literatura, principalmente devido à computação intensiva e ao longo tempo de processamento. A maioria dos métodos de modelagem de tópicos assume implicitamente que o número de tópicos é conhecido com antecedência, portanto, considerando que exige um parâmetro exógeno. Isso é um tanto complicado para o pesquisador pois acaba acrescentando à técnica uma subjetividade. A qualidade dos insights oferecidos pelo LDA é bastante sensível ao valor do parâmetro K, e pode-se argumentar que um excesso de subjetividade em sua escolha possa influenciar a confiança que os gerentes depositam nos resultados da técnica, prejudicando assim seu uso pelas empresas. O principal objetivo desta dissertação é desenvolver uma métrica para identificar o valor ideal para o parâmetro K do modelo LDA que permita uma representação adequada do corpus e dentro de um tempo de processamento tolerável. Embora cada métrica possua método próprio para determinação do número de tópicos, alguns resultados são semelhantes para a mesma base de dados, conforme evidenciado no estudo. Nossa métrica é superior ao considerar o tempo de processamento. Experimentos mostram que esse método é eficaz. |