Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Romeu, André Piva |
Orientador(a): |
De Leon, Daniel Milbrath |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/272402
|
Resumo: |
Esta dissertação tem como objetivo desenvolver um código e uma metodologia para a otimização topológica de materiais piezoelétricos no contexto de mecanismos flexíveis. Mecanismos flexíveis são dispositivos não rígidos e funcionam com a deformação do material para alcançar o objetivo proposto. Para sintetizar tais mecanismos, foi utilizada a otimização topológica. A otimização topológica é um método matemático que atribui uma quantidade prescrita de material a um domínio prescrito. A discretização do domínio pelo método dos elementos finitos é uma abordagem usual e o seu uso foi auxiliado pela utiliza- ção de bibliotecas Python gratuitas, como o projeto FEniCS (Finite Element Computational Software) e o dolfin adjoint. Entre o grande número de métodos para a otimização de topologia, o método PEMAP (PiezoElectric MAterial with Penalization) foi escolhido; um método semelhante ao SIMP(Solid Isotropic Material with Penalization), mas com o efeito piezoelétrico como um de seus fatores. Materiais piezoelétricos podem gerar campos elétricos a partir de deformações assim como ocorre o processo inverso com a aplicação de um campo elétrico. Atuadores piezoelétricos podem ser usados em diversas aplicações, dentre elas, sistemas de eletrônica embarcada e uso em equipamentos médicos, ambos necessitando aplicações em micro e nanoescala. Uma das características dos mecanismos flexíveis é a ausência de juntas e articulações, o que facilita o uso em pequenas escalas, uma vez que nenhuma montagem é necessária e não há folgas entre os componentes. A otimização topologica utilizada teve como objetivo a minimização de mean compliance e a maximização de mean transduction. Com a metodologia descrita neste trabalho, foram resolvidos cinco problemas de otimização dupla multi-objetiva de material piezoelétrico e não piezoelétrico com polaridade no plano estudado. Os resultados apresentados foram discutidos e a validação foi realizada com todos os passos anteriores do problema. |