Detalhes bibliográficos
Ano de defesa: |
1994 |
Autor(a) principal: |
Kozakevicius, Alice de Jesus |
Orientador(a): |
Vilhena, Marco Tullio Menna Barreto de |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/10183/119114
|
Resumo: |
Este trabalho tem como objetivo apresentar uma solução em forma fechada para uma modelagem, tanto unidimensional quanto bidimensional, do processo de solidificação. Esta modelagem, proposta por Kanetkar et al, aborda a solidificação em termos de dois processos: o macroscópico e o microscópico. O primeiro descreve a transferência de calor do metal para o molde e do sistema metal-molde para o meio ambiente; já. o segundo descreve a formação e o desenvolvimento de grãos no metal durante sua mudança de fase. O acoplamento desses processos se dá. através da inclusão do termo fonte, representante da cinética de solidificação, na equação de conservação de energia para condução do calor. Ao invés de utilizar o método de diferenças finitas na resolução das equações do modelo unidimensional, aplica-se a transformada de Laplace com respeito à variável t e resolve-se analiticamente, via software REDUCE, o sistema de equações gerado pelas condições de contorno para a obtenção dos coeficientes da solução transformada. No caso bidimensional, utiliza-se um método nodal para transformar o problema novamente em uma modelagem unidimensional. Integram-se as equações em uma das direções, no caso, em z, passando-se a calcular o fluxo médio de calor. Uma extensão possfvel é subdividir o domÍnio de integração e calcular o fluxo médio em cada uma das novas regiões interligadas através de condições de contorno. |