Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Rocho, Valdirene da Rosa |
Orientador(a): |
Justo, Dagoberto Adriano Rizzotto |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/10183/54737
|
Resumo: |
O objetivo deste trabalho é estudar o uso de métodos iterativos para a obtenção da solução da equação de Poisson com condições de contorno de Dirichlet e de Neumann para o caso uni e bidimensional em um retângulo (0, 1) × (0, 1). Ao discretizar a equação de Poisson com o método de diferenças finitas obtém-se um sistema linear que pode ser resolvido através de um método iterativo. Para o problema de Neumann obtemos condições para que o problema tenha solução baseado na integral do termo fonte. Fez-se um breve estudo referente aos métodos iterativos de Jacobi, Gauss-Seidel e SOR aplicados ao sistema obtido analisando o espectro da matriz de iteração dos respectivos métodos. A partir do maior autovalor em módulo po- demos estudar a convergência dos métodos (quando os autovalores estão no disco unitário) e a taxa de convergência com a qual cada método convergirá. Foi desenvolvido um código em linguagem Fortran e MATLAB para tes- tar os resultados teóricos aplicados à solução do problema de Poisson num quadrado. Estudou-se também o método SOR e a obtenção do parâmetro ω ótimo. Ainda neste trabalho destacamos também a aplicação dos resultados na solução do problema da cavidade. Utilizando o método PRIME, a partir da equação de Navier-Stokes podemos obter uma equação de Poisson para a pressão. Dos problemas estudados montou-se os sistemas lineares, a partir destes pode-se verificar a existência de uma única ou infinitas soluções. E a partir da matriz de iteração de cada método iterativo pode-se determinar os autovalores e assim concluir quanto a convergência de cada método. |