BRHIM - Base de Registros Hospitalares para Informações e Metadados

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Vaz, Tiago Andres
Orientador(a): Camey, Suzi Alves
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/10183/253159
Resumo: Os riscos de reidentificação de dados hospitalares são altos e há uma demanda por eles em projetos de desenvolvimento e validação de Inteligência Artificial (IA). Este trabalho aborda os principais métodos de preparação de registros hospitalares usados para realizar estudos observacionais de maneira direcionada de avaliar o risco de reidentificação e o impacto da perda de informações que a anonimização produz nos resultados da IA. Uma revisão sobre o assunto é apresentada no início e após são apresentados dois artigos, sempre considerando o contexto da utilização de registros hospitalares em estudos epidemiológicos. O primeiro artigo propõe uma ontologia de domínio para definir um escopo para a tratar a anonimização. Os tipos de ataques, os tipos de dados e atributos, os modelos de privacidade, os tipos de uso da inteligência artificial e os diferentes delineamentos são apresentados. Foi feito um exemplo de instância da ontologia na ferramenta Web Protegé, disponível pela Universidade de Stanford para a construção de ontologias e que permite replica-la. O segundo artigo visa definir uma receita de preparação de prontuário hospitalar com 5 etapas para implementar a pseudo-anonimização, desidentificação e anonimização de dados e comparar os efeitos dessas etapas em uma aplicação da IA. Para isto, um evento Datathon foi realizado para desenvolver um preditor de IA de mortalidade hospitalar. Comparando os resultados da IA usando os dados originais e os dados anônimos, demonstrando uma diferenca inferior a 1% nos resultados da AUC-ROC, enquanto o risco de um paciente ser identificado foi reduzido em 95%, demonstrando que o preparo pode ser sistematizado agregando privacidade e computando a perda de informações, a fim de torná-los transparentes.