Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Wilkens, Rodrigo Souza |
Orientador(a): |
Villavicencio, Aline |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/142158
|
Resumo: |
linguagem é uma marca da humanidade e da consciência, sendo a conversação (ou diálogo) uma das maneiras de comunicacão mais fundamentais que aprendemos quando crianças. Por isso uma forma de fazer um computador mais atrativo para interação com usuários é usando linguagem natural. Dos sistemas com algum grau de capacidade de linguagem desenvolvidos, o chatterbot Eliza é, provavelmente, o primeiro sistema com foco em diálogo. Com o objetivo de tornar a interação mais interessante e útil para o usuário há outras aplicações alem de chatterbots, como agentes conversacionais. Estes agentes geralmente possuem, em algum grau, propriedades como: corpo (com estados cognitivos, incluindo crenças, desejos e intenções ou objetivos); incorporação interativa no mundo real ou virtual (incluindo percepções de eventos, comunicação, habilidade de manipular o mundo e comunicar com outros agentes); e comportamento similar ao humano (incluindo habilidades afetivas). Este tipo de agente tem sido chamado de diversos nomes como agentes animados ou agentes conversacionais incorporados. Um sistema de diálogo possui seis componentes básicos. (1) O componente de reconhecimento de fala que é responsável por traduzir a fala do usuário em texto. (2) O componente de entendimento de linguagem natural que produz uma representação semântica adequada para diálogos, normalmente utilizando gramáticas e ontologias. (3) O gerenciador de tarefa que escolhe os conceitos a serem expressos ao usuário. (4) O componente de geração de linguagem natural que define como expressar estes conceitos em palavras. (5) O gerenciador de diálogo controla a estrutura do diálogo. (6) O sintetizador de voz é responsável por traduzir a resposta do agente em fala. No entanto, não há consenso sobre os recursos necessários para desenvolver agentes conversacionais e a dificuldade envolvida nisso (especialmente em línguas com poucos recursos disponíveis). Este trabalho foca na influência dos componentes de linguagem natural (entendimento e gerência de diálogo) e analisa em especial o uso de sistemas de análise sintática (parser) como parte do desenvolvimento de agentes conversacionais com habilidades de linguagem mais flexível. Este trabalho analisa quais os recursos do analisador sintático contribuem para agentes conversacionais e aborda como os desenvolver, tendo como língua alvo o português (uma língua com poucos recursos disponíveis). Para isto, analisamos as abordagens de entendimento de linguagem natural e identificamos as abordagens de análise sintática que oferecem um bom desempenho. Baseados nesta análise, desenvolvemos um protótipo para avaliar o impacto do uso de analisador sintático em um agente conversacional. |