Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Ramos, Gustavo Roberto |
Orientador(a): |
Rossi, Rodrigo |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/133134
|
Resumo: |
O presente trabalho trata da modelagem da condução de calor transiente com geração de calor em meios heterogêneos, e tem o objetivo de desenvolver um modelo multiescala adequado a esse fenômeno. Já existem modelos multiescala na literatura relacionados ao problema proposto, e que são válidos para os seguintes casos: (a) o elemento de volume representativo tem tamanho desprezível quando comparado ao comprimento característico macroscópico (e como consequência, a microescala tem inércia térmica desprezível); ou (b) a geração de calor é homogênea na microescala. Por outro lado, o modelo proposto nesta tese, o qual é desenvolvido utilizando uma descrição variacional do problema, pode ser aplicado a elementos de volume representativos finitos e em condições em que a geração de calor é heterogênea na microescala. A discretização temporal (diferenças finitas) e as discretizações espaciais na microescala e na macroescala (método dos elementos finitos) são apresentadas em detalhes, juntamente com os algoritmos necessários para implementar a solução do problema. Nesta tese são apresentados casos numéricos simples, procurando verificar não só o modelo teórico multiescala desenvolvido, mas também a implementação feita. Para tanto, são analisados, por exemplo, (a) casos em que considera-se a microescala um material homogêneo, tornando possível a comparação da solução multiescala com a solução convencional (uma única escala) pelo método dos elementos finitos, e (b) um caso em um material heterogêneo para o qual a solução completa, isto é, modelando diretamente os constituintes no corpo macroscópico, é obtida, tornando possível a comparação com a solução multiescala. A solução na microescala para vários casos analisados nesta tese sofre grande influência da inércia térmica da microescala. Para demonstrar o potencial de aplicação do modelo multiescala, simula-se a cura de um elastômero carregado com negro de fumo. Embora a simulação demonstre que a inércia térmica não precise ser considerada para esse caso em particular, a aplicação da presente metodologia torna possível modelar a cura do elastômero diretamente sobre a microescala, uma abordagem até então não utilizada no contexto de métodos multiescala. Essa metodologia abre a possibilidade para futuros aperfeiçoamentos da modelagem do estado de cura. |