Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Beluco, Adriano |
Orientador(a): |
Bandeira, Denise Lindstrom |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/76196
|
Resumo: |
Este estudo propõe um modelo híbrido que reúne uma rede neural do tipo SOM (Self-Organizing Map) com uma rede neural do tipo Multicamadas com Retropropagação (BPN: Backpropagation Network). A utilização da rede SOM tem o intuito de segmentar a base de dados em diversos clusters, onde são ressaltadas suas diferenças. A rede BPN é usada para construir um modelo matemático de previsão que descreve a relação entre os indicadores e o valor de fechamento de cada cluster formado na rede SOM. A viabilidade e o percentual de efetividade do modelo proposto são demonstrados através de experimentos de predição de índices utilizados pelo NYSE (New York Stock Exchange). O modelo foi elaborado a partir de uma base de dados composta pelo índice NYSE Composite U.S. 100 no período entre 02 de abril de 2004 a 08 de novembro de 2012. Como variáveis de entrada para as redes neurais, foram utilizados 10 índices: MA_10, BIAS_20, WMS%R_9, K_9, D_9, MTM_10, ROC_10, CCI_24, AR_26, BR_26. Os resultados obtidos com o modelo híbrido proposto se mostraram superiores aos obtidos com modelos convencionais estatísticos. |