Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Rocha, Leandro Mateus Giacomini |
Orientador(a): |
Bampi, Sergio |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/215353
|
Resumo: |
O aumento da densidade de potência e do uso pervasivo de aplicações com alto custo em esforço computacional e em dissipação de potência exigem eficiência energética no projeto CMOS. A busca por sistemas eficientes energeticamente é particularmente crítica em dispositivos vestíveis para monitoramento de sinais vitais uma vez que estes devem operar ininterruptamente mesmo com uma fonte de energia limitada disponível nas baterias miniaturizadas. Há um interesse crescente no emprego de aplicações baseadas em redes neurais para o processamento de dados em dispositivos embarcados. Redes neurais possuem estruturas inerentemente complexas para implementação, seja em software, hardware ou em uma combinação estreita de ambos. Tais redes requerem milhões de operações aritméticas e acessos à memória que demandam um gasto de energia elevado, e simplesmente reduzir a largura de representação dos parâmetros e dados de entrada para respeitar as restrições de dissipação de energia pode não ser a melhor estratégia devido ao impacto no erro percebido no resultado da aplicação. Assim, esse trabalho propõe um framework para geração de circuitos aritméticos, permitindo uma exploração arquitetura para buscar a máxima eficiência energética. Como estudo de caso, essa tese também propõe uma abordagem de otimização conjunta de hardware e software para implemetar um aplicação para estimação de frequência cardíaca a partir de sinais de fotopletismografia baseada em uma implementação de redes neurais. Essa abordagem combina técnicas de binarização e quantização para reduzir os requisitos de processamento, transformando o modelo em uma implementação mais adequada para a execução em hardware. Uma arquitetura de hardware customizada é proposta para esta aplicação para operação em tempo real com máxima eficiência energética. Esta arquitetura baseada em fluxo de dados minimiza a latência do sistema ao adotar uma implementação com pipeline em todos os estágios, explorando os requisitos da aplicação. Esta arquitetura foi validada em plataformas FPGA e ASIC para garantir sua viabilidade em sistemas embarcados. |