Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Bordin, Maycon Viana |
Orientador(a): |
Geyer, Claudio Fernando Resin |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/163441
|
Resumo: |
Um dado por si só não possui valor algum, a menos que ele seja interpretado, contextualizado e agregado com outros dados, para então possuir valor, tornando-o uma informação. Em algumas classes de aplicações o valor não está apenas na informação, mas também na velocidade com que essa informação é obtida. As negociações de alta frequência (NAF) são um bom exemplo onde a lucratividade é diretamente proporcional a latência (LOVELESS; STOIKOV; WAEBER, 2013). Com a evolução do hardware e de ferramentas de processamento de dados diversas aplicações que antes levavam horas para produzir resultados, hoje precisam produzir resultados em questão de minutos ou segundos (BARLOW, 2013). Este tipo de aplicação tem como característica, além da necessidade de processamento em tempo-real ou quase real, a ingestão contínua de grandes e ilimitadas quantidades de dados na forma de tuplas ou eventos. A crescente demanda por aplicações com esses requisitos levou a criação de sistemas que disponibilizam um modelo de programação que abstrai detalhes como escalonamento, tolerância a falhas, processamento e otimização de consultas. Estes sistemas são conhecidos como Stream Processing Systems (SPS), Data Stream Management Systems (DSMS) (CHAKRAVARTHY, 2009) ou Stream Processing Engines (SPE) (ABADI et al., 2005). Ultimamente estes sistemas adotaram uma arquitetura distribuída como forma de lidar com as quantidades cada vez maiores de dados (ZAHARIA et al., 2012). Entre estes sistemas estão S4, Storm, Spark Streaming, Flink Streaming e mais recentemente Samza e Apache Beam. Estes sistemas modelam o processamento de dados através de um grafo de fluxo com vértices representando os operadores e as arestas representando os data streams. Mas as similaridades não vão muito além disso, pois cada sistema possui suas particularidades com relação aos mecanismos de tolerância e recuperação a falhas, escalonamento e paralelismo de operadores, e padrões de comunicação. Neste senário seria útil possuir uma ferramenta para a comparação destes sistemas em diferentes workloads, para auxiliar na seleção da plataforma mais adequada para um trabalho específico. Este trabalho propõe um benchmark composto por aplicações de diferentes áreas, bem como um framework para o desenvolvimento e avaliação de SPSs distribuídos. |