Projeção de preço para ações brasileiras utilizando-se dados em alta frequência
Ano de defesa: | 2024 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por eng |
Instituição de defesa: |
Universidade Presbiteriana Mackenzie
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://dspace.mackenzie.br/handle/10899/38148 |
Resumo: | O objetivo deste trabalho é investigar o poder preditivo de modelos econométricos e machine learning quando aplicados a séries temporais financeiras em alta frequência. Este tema é pertinente aos agentes econômicos atuantes no mercado financeiro brasileiro, que anseiam por ferramentas capazes de sustentar sua tomada de decisão em meio às inovações de conjuntura. Esta pesquisa está subdividida em três partes: a primeira conta com uma análise bibliométrica – combinada a uma revisão sistemática – da literatura empírica sobre Projeção de preço para ações brasileiras utilizando-se dados em alta frequência. Em seguida passa-se a utilizar o arcabouço econométrico e de machine learning existente aplicado a séries em alta frequência para algumas ações negociadas no ambiente da B3. Por fim, o desempenho dos modelos será mensurado e avaliado de modo crítico através do procedimento Model Confidence Set, possibilitando um veredito conclusivo a respeito das vantagens e obstáculos impostos a cada abordagem. |