Aplicação de aprendizagem de máquina para desenvolvimento de um framework para identificação de comportamentos maliciosos em rede

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Lopes, Patrick Estevam
Orientador(a): Ruivo, Eurico Luiz Prospero
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
eng
Instituição de defesa: Universidade Presbiteriana Mackenzie
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://dspace.mackenzie.br/handle/10899/39433
Resumo: As ameaças disparadas por cibercriminosos tem-se intensificado nos últimos cinco anos, e este fato tem relação com o avanço tecnológico das redes de comunicação. Em meio às redes corporativas e até mesmo na conexão com a Internet, os ataques cibernéticos atuam na perspectiva de adquirir informações privadas. O presente trabalho avaliou a possibilidade de uso do conjunto de dados CIC-IDS2017, base de dados comumente empregada para estudos de cibersegurança, para treinamento de modelos de aprendizagem de máquina a serem utilizados em outra base de dados construída com base em informações capturadas por uma ferramenta de monitoramento de tráfego. Observou-se que os desempenhos dos modelos nesse cenário aproximaram-se aos de um classificador aleatório, evidenciando a impossibilidade de transferência de conhecimento conforme proposto. Dessa forma, as mesmas técnicas utilizadas para a base CIC-IDS2017 foram treinadas e testadas com a nova base gerada e seus desempenhos foram comparados. Ainda, com base nas análises executadas sob o novo conjunto de dados, os modelos de aprendizado de máquina, Random Forest (RF), K-Nearest Neighbours (K-NN) e Multi-layer Perceptron (MLP), foram aplicados para identificar comportamentos maliciosos. Os resultados indicam o RF como destaque, com alta acurácia. A validação cruzada por K-Pastas reforçou o desempenho superior do RF, tornando-o uma escolha promissora para ser adicionado como modelo foco na construção de uma ferramenta de identificação de anomalias em rede, intitulada de NGIDS.