Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Mattos, Thiago de
 |
Orientador(a): |
Oliveira, Pedro Paulo Balbi de
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Presbiteriana Mackenzie
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://dspace.mackenzie.br/handle/10899/24478
|
Resumo: |
Boolean networks consist of nodes that represent binary variables, which are computed as a function of the values represented by their adjacent nodes. This local processing entails global behaviors, such as the convergence to _xed points, a behavior found in the context of the density classi_cation problem, where the aim is the network's convergence to a fixed point of the prevailing node value in the initial global configuration of the network; in other words, a global decision is targeted, but according to a constrained, non-global action. In this work, we rely on evolutionary searches in order to _nd rules and network topologies with good performance in the task. All nodes' neighborhoods are assumed to be de_ned by non-regular and bidirectional links, and the Boolean function of the network initialized by the local majority rule. Firstly, is carried out a search in the space of network topologies, guided by the ω metric, related to the "small-worldness" of the networks, and then, in the space of Boolean functions, but constraining the network topologies to the best family identified in the previous experiment.. |