Detalhes bibliográficos
Ano de defesa: |
2024 |
Autor(a) principal: |
Tieppo, Bianca |
Orientador(a): |
Saito, Lucia Akemi Miyazato |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Presbiteriana Mackenzie
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://dspace.mackenzie.br/handle/10899/39932
|
Resumo: |
A brucelose bovina, uma doença infecciosa causada principalmente pela bactéria Brucella abortus, pode afetar espécies de animais domésticos e selvagens, o que implica em prejuízos econômicos e riscos â saúde pública. Diagnostica-la de modo preciso e precoce, portanto, é fundamental para controlá-la e erradicá-la. Isso pode ser obtido por meio de abordagens de Machine Learning (ML), como Redes Neurais e algoritmos de classificação, combinadas a biossensores ópticos. Tais abordagens já são amplamente empregadas para analisar um grande volume de dados gerado por biossensores. Neste sentido, este trabalho propõe a utilizacao de Redes Neurais Artificiais (ANN) para processar aproximadamente 700 imagens de microscopia óptica de amostras de soro bovino em um guia de onda de silício. A presença dos anticorpos de Brucella abortus é evidenciada através dos pontos de dispersão de luz detectados através de técnicas de processamento de imagens e detecção de blobs, além da análise de dados envolvendo as informações de cores das imagens. A identificação da presença dos anticorpos foi feita em amostras com concentração semelhante aos métodos convencionais para detecção da brucelose bovina. Com a metodologia utilizada, foi possível reduzir o tempo de análise, além de possibilitar uma acurácia de 83,28% e precisão de 86,25% para a detecção dos anticorpos da brucelose bovina devido a utilização de t´técnicas de visão computacional e de aprendizado de máquina. |