Detalhes bibliográficos
Ano de defesa: |
2011 |
Autor(a) principal: |
Martins, Alex
 |
Orientador(a): |
Monteiro, Luiz Henrique Alves
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Presbiteriana Mackenzie
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://dspace.mackenzie.br/handle/10899/24330
|
Resumo: |
Pode-se entender sincronismo como uma organização temporal de eventos, possível de emergir em sistemas complexos, como redes neurais. Aqui, usam-se grafo aleatório e autômato celular (AC) para representar redes neurais, a fim de investigar a ocorrência de sincronismo em tais redes. A topologia de acoplamento da rede é do tipo Newman-Watts, formada por uma grade regular com ligações aleatórias acrescentadas. Duas partes com essa estrutura são conectadas por ligações aleatórias. Resultados obtidos por simulações numéricas com esse modelo indicam diversidade de comportamento oscilatório: há casos em que as duas partes oscilam em períodos iguais, múltiplos e submúltiplos; e casos sem oscilação. Investigaram-se as relações entre comportamento oscilatório e a atividade máxima, o tempo para se alcançar essa atividade, o comprimento do caminho mínimo médio, o tamanho da rede, a porcentagem de ligações aleatórias adicionadas, e as regras de transição de estado do AC. Comportamento síncrono foi encontrado em mais de 75% das 28.000 simulações realizadas. A dinâmica do sistema é mais influenciada por variações no número de passos de tempo em que a célula permanece disparando do que por alterações no tamanho do reticulado ou no percentual das ligações aleatórias adicionais. |