Demodulação M-QAM empregando técnicas de Aprendizado de Máquina

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Toledo, Roberto Neves lattes
Orientador(a): Akamine, Cristiano lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Presbiteriana Mackenzie
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://dspace.mackenzie.br/handle/10899/28600
Resumo: Este trabalho apresenta os desafios enfrentados na demodulação de sinais M-QAM (Quadrature Amplitude Modulation) de alta ordem, uniformes e não uniformes, com o método de LLR (Log-Likelihood Ratio), que é um dos mais utilizadas nos sistemas de comunicação modernos. São abordados os principais conceitos téoricos como modulação, demodulação, aprendizado de máquina e rádio cognitivo. Resultados comparativos são apresentados para diversos algoritmos de aprendizado de máquina, atuando como classificação e regressão, até a definição pelo modelo final que é compatível com os padrões atuais. Então, é proposto um novo modelo de demodulação do sinal M-QAM, avaliando sua resposta para diferentes ordens de modulação e valores de SNR (Signal-to-Noise Ratio), quando concatenado a um codificador de canal LDPC (Low-density Parity-Check). Os resultados experimentais demonstram um ganho de desempenho de até 1485% para 4096-QAM em comparação com o demodulador clássico LLR Max-Log-MAP, mantendo o mesmo patamar de BER (Bit Error Rate). Finalmente, esse novo esquema demodulador foi implementado no ambiente do GRC (GNU Radio Companion) para validar as simulações computacionais.