Fatores determinantes na análise de crédito da indústria multinacional agrícola de grande porte

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Oliveira, Rodrigo Cavaliere lattes
Orientador(a): Perera, Luiz Carlos Jacob lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Presbiteriana Mackenzie
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://dspace.mackenzie.br/handle/10899/26310
Resumo: Este estudo visou analisar a importância do setor agrícola para economia brasileira e as particularidades presentes no Brasil sob a ótica de risco de crédito, como as multinacionais agrícolas efetuam suas análises de crédito, que modelos utilizam e quais variáveis são consideradas mais importantes para uma boa discriminação entre clientes bons e clientes ruins, ou seja, prever com certo grau de acurácia os clientes que serão adimplentes e inadimplentes. Nesse contexto foram testados três modelos estatísticos para confirmar a teoria para esse setor e foram comparados os resultados de acerto entre eles. Duas técnicas paramétricas, regressão logística e análise de discriminante, e uma não paramétrica, árvore de decisão CART. Os três modelos se mostraram adequados, com um bom poder explicativo, com um destaque maior para árvore de decisão e regressão logística. As variáveis qualitativas mostraram alto poder explicativos e importantes para uma boa análise de crédito. Dentre as variáveis quantitativas, índices de liquidez, endividamento e prazo médio de pagamento se destacaram como boas discriminadoras de crédito