Aprendizado de máquina para detecção de exoplanetas em dados da missão TESS
Ano de defesa: | 2021 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por eng |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://dspace.mackenzie.br/handle/10899/28660 |
Resumo: | A detecção de exoplanetas com base em curvas de luz pode ser um procedimento de alto custo computacional, especialmente quando tais curvas possuem alto nível de resolução temporal, como aquelas produzidas pela Missão TESS. O pré-processamento de curvas de luz baseado em Aprendizado de Máquina já foi utilizado com sucesso na Missão Ke pler, pela parceria entre a NASA e a Google (com o modelo tensorial do TensorFlow), permitindo excluir curvas de luz que não poderiam ter trânsitos planetários e reduzindo a quantidade de dados a serem processados posteriormente. Neste contexto, esta dissertação apresenta aplicação de outras técnicas de Aprendizado de Máquina como Árvores de Decisão, Florestas Aleatórias e Boost para reduzir o número de curvas de luz obtidas da Missão TESS que, efetivamente, podem reconhecer se há trânsitos planetários. Também são mostrados e comentados os resultados de exploração destas técnicas em curvas de luz da Missão TESS. |