Aprendizado de máquina para detecção de exoplanetas em dados da missão TESS

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Andrade, Israel da Silva Rodrigues de
Orientador(a): Silva, Luciano
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
CCD
Link de acesso: https://dspace.mackenzie.br/handle/10899/28660
Resumo: A detecção de exoplanetas com base em curvas de luz pode ser um procedimento de alto custo computacional, especialmente quando tais curvas possuem alto nível de resolução temporal, como aquelas produzidas pela Missão TESS. O pré-processamento de curvas de luz baseado em Aprendizado de Máquina já foi utilizado com sucesso na Missão Ke pler, pela parceria entre a NASA e a Google (com o modelo tensorial do TensorFlow), permitindo excluir curvas de luz que não poderiam ter trânsitos planetários e reduzindo a quantidade de dados a serem processados posteriormente. Neste contexto, esta dissertação apresenta aplicação de outras técnicas de Aprendizado de Máquina como Árvores de Decisão, Florestas Aleatórias e Boost para reduzir o número de curvas de luz obtidas da Missão TESS que, efetivamente, podem reconhecer se há trânsitos planetários. Também são mostrados e comentados os resultados de exploração destas técnicas em curvas de luz da Missão TESS.