Detalhes bibliográficos
Ano de defesa: |
2011 |
Autor(a) principal: |
Lopes, Neilson Soares
 |
Orientador(a): |
Kimura, Herbert
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Presbiteriana Mackenzie
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://dspace.mackenzie.br/handle/10899/23357
|
Resumo: |
Neste estudo foram aplicadas as técnicas paramétricas tradicionais de análise discriminante e regressão logística para análise de crédito de operações de financiamento imobiliário. Foi comparada a taxa de acertos destes métodos com as técnicas não-paramétricas baseadas em árvores de classificação, além dos métodos de meta-aprendizagem BAGGING e BOOSTING, que combinam classificadores para obter uma melhor precisão nos algoritmos.Em um contexto de alto déficit de moradias, em especial no caso brasileiro, o financiamento de imóveis ainda pode ser bastante fomentado. Os impactos de um crescimento sustentável no crédito imobiliário trazem benefícios não só econômicos como sociais. A moradia é, para grande parte dos indivíduos, a maior fonte de despesas e o ativo mais valioso que terão durante sua vida. Ao final do estudo, concluiu-se que as técnicas computacionais de árvores de decisão se mostram mais efetivas para a predição de maus pagadores (94,2% de acerto), seguida do BAGGING (80,7%) e do BOOSTING (ou ARCING, 75,2%). Para a predição de maus pagadores em financiamentos imobiliários, as técnicas de regressão logística e análise discriminante apresentaram os piores resultados (74,6% e 70,7%, respectivamente). Para os bons pagadores, a árvore de decisão também apresentou o melhor poder preditivo (75,8%), seguida da análise discriminante (75,3%) e do BOOSTING (72,9%). Para os bons pagadores de financiamentos imobiliários, BAGGING e regressão logística apresentaram os piores resultados (72,1% e 71,7%, respectivamente).A regressão logística mostra que, para um tomador com crédito consignado, a chance se ser um mau pagador é 2,19 maior do que se este tomador não tivesse tal modalidade de empréstimo. A presença de crédito consignado entre as operações dos tomadores de financiamento imobiliário também apresenta relevância na análise discriminante. |