Mercado de capitais artificial : uma simulação baseada em agentes

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Castro, Conceição Jacqueline Xavier Barbosa de lattes
Orientador(a): Hadad Junior, Eli lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Presbiteriana Mackenzie
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://dspace.mackenzie.br/handle/10899/28378
Resumo: This dissertation aimed to compare and evaluate the predictive power of an artificial stock market model developed by agent-based modeling techniques (ABM). An empirical study was carried out to forecast the values of certain shares of B3, the Brazilian stock exchange, through the model of Collective Behavior in the Stock Market, created by Silva (2014). The values generated were compared with the reais collected between the dates: 06/05/2019 and the end date on 08/17/2020. The environment used was the Netlogo. The sample of data for comparison included 299 observations, with a simulation of 5400 models for each stock. The analysis comprised the comparison between the forecast and the actual closing price within established periods. The selection of models was performed using the Directional Accuracy test of Pesaran-Timmerman (2006). The results of the models were compared with a model based on statistics, using an ARIMA algorithm, by Box and Jenkins (1976). The models showed satisfactory initial results for the predictive power.