Nanocompósitos poliméricos de pet/grafeno: relação da morfologia com a condutividade térmica

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Petraconi, André
Orientador(a): Andrade, Ricardo Jorge Espanhol
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
eng
Instituição de defesa: Universidade Presbiteriana Mackenzie
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://dspace.mackenzie.br/handle/10899/31083
Resumo: A síntese, caracterização, modificação e aplicação de grafeno está recebendo atualmente muita atenção devido às suas propriedades únicas, e aplicações inovadoras e disruptivas, tais como nanocompósitos multifuncionais (função de barreira eletromagnética, dissipação de calor, melhor desempenho mecânico, entre outras), materiais inteligentes através da impressão 3D/4D, tintas condutivas, entre outras. Entender a relação entre a estrutura/morfologia, processamento e propriedades finais, é essencial para o design e produção de materiais com propriedades apropriadas para as várias aplicações emergentes. Neste contexto, este trabalho investiga sobre a relação entre a morfologia e os mecanismos de dissipação de energia térmica entre o poli(tereftalato de etileno (PET) e dois tipos de grafenos comerciais incorporados por meio da técnica de mistura por fundido. Os resultados indicam que as nanopartículas de grafeno com concentrações variando entre 0,001 a 1 phr, conferem um incremento de aproximadamente de 8% na condutividade térmica do nanocompósito de PET com grafeno esfoliado contendo maior tamanho lateral (PET/GNEX). Enquanto as outras amostras de PET com grafeno esfoliado de menor tamanho lateral (PET/GE) indicou uma redução na condutividade térmica de até 5% nas mesmas concentrações utilizadas, porém, na concentração de grafeno de 0,1 phr apresentou um incremento de 44% no módulo de Young em relação ao PET puro. O principal efeito observado é o aprimoramento do módulo de Young ao utilizar nanopartículas com menor tamanho lateral, enquanto as maiores produzem uma melhoria da condutividade térmica sem a deterioração das propriedades mecânicas. Estes fatores também contribuíram para o aumento da viscosidade comprovada nos ensaios reológicos e da condutividade térmica nas interfaces criadas entre o PET e o grafeno GNEX devido o maior tamanho lateral, menor defeitos estruturais e uma distribuição espacial mais uniforme nos nanocompósitos. Os resultados das análises elucidam sobre estes efeitos e indicam um caminho para o aprimoramento das propriedades térmicas e mecânicas dos nanocompósitos.