Inferência do teor de nitrogênio foliar em laranjeira-valência com imagens multiespectrais de alta resolução espacial
Ano de defesa: | 2019 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade do Oeste Paulista
Doutorado em Agronomia Brasil UNOESTE |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://bdtd.unoeste.br:8080/jspui/handle/jspui/1286 |
Resumo: | O nitrogênio possui papel fundamental na atividade fotossintética das plantas, e a sua análise é essencial para o manejo de culturas agrícolas. Uma maneira de se obter informações rápidas e menos dispendiosas do nutriente é por meio do processamento de imagens multiespectrais. As aplicações com imagens adquiridas por sensores a bordo de Aeronaves Remotamente Pilotadas (ARP) aumentaram na Agricultura de Precisão. Todavia, em citrus, em específico laranjeiras, pouco se conhece sobre o potencial das imagens multiespectrais adquiridas com ARPs na inferência do teor de nitrogênio foliar. Diante desse contexto, o objetivo desta pesquisa foi avaliar o potencial de imagens multiespectrais de alta resolução espacial para inferir o teor de nitrogênio foliar em laranjeiras-valência. Como método, aplicamos duas abordagens para inferir o teor de nitrogênio foliar: (1) classificação de imagens e; (2) índices espectrais. Para isso, conduzimos um experimento em um pomar de laranjeiras-valência (porta-enxerto Citrumelo Swingle) e coletamos folhas de diferentes talhões da plantação. Realizamos um voo com uma ARP eBee SenseFly, equipado com a câmera Parrot Sequoia, que registra bandas nas faixas do verde, vermelho, borda-do-vermelho e do infravermelho-próximo, com Ground Sample Distance (GSD) de 12 cm. Na primeira abordagem determinamos que o algoritmo de classificação Spectral Angle Mapper (SAM) possui o melhor desempenho ao classificar o nitrogênio foliar, com acurácia global de 85,7% e coeficiente kappa de 0,75. Na segunda abordagem determinamos que o índice espectral Chlorophyll Vegetation Index (CVI) é a alternativa de melhor acurácia (R² de 0,81 e Raiz do Erro Quadrático Médio - REQM) de 0,942 g.kg-1) entre os índices testados para inferir o teor de nitrogênio foliar em laranjeiras-valência. Concluímos que é possível estabelecer relações precisas entre o teor de nitrogênio foliar quantificado em laboratório e a resposta espectral da planta registrada na imagem. Assim, imagens multiespectrais de alta resolução espacial são eficientes para discriminar os teores de nitrogênio foliar em laranjeiras-valência. A abordagem investigada mostrou resultados superiores aos métodos previamente avaliados na literatura. |