Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Custódio, Caio Amaral |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/190855
|
Resumo: |
Nesse trabalho propomos o desenvolvimento de redes neurais artificiais capazes de fornecer a energia do estado fundamental do modelo de Hubbard para nanoestruturas fermiônicas interagentes e homogêneas. Uma vez otimizado o funcional via rede neural, este pode ser usado como input em cálculos de funcionais da densidade para sistemas heterogêneos. O modelo neural obtido mostrou um desempenho excelente, com desvios menores que ∼ 0,2%, recuperando todos os regimes de densidade, magnetização e uma vasta extensão de regimes de interação, quando comparado com resultados numéricos exatos. Comparado à funcionais analíticos, o modelo neural é mais preciso em todos os regimes de parâmetros, especialmente no regime de fraca interação, onde o funcional analítico mais recente apresenta um grande desvio: ∼ 7%, contra ∼ 0,1% para o nosso modelo neural. Aplicado em aproximações de densidade local para cálculos de DFT para cadeias finitas e com heterogeneidades, como impurezas localizadas e potenciais confinantes, nosso modelo neural se mostrou uma alternativa confiável e usando apenas uma fração dos recursos computacionais de outros tratamentos numéricos. |