Redes neurais artificiais e teoria do funcional da densidade: otimização de funcionais para modelagem de nanomateriais

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Custódio, Caio Amaral
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/190855
Resumo: Nesse trabalho propomos o desenvolvimento de redes neurais artificiais capazes de fornecer a energia do estado fundamental do modelo de Hubbard para nanoestruturas fermiônicas interagentes e homogêneas. Uma vez otimizado o funcional via rede neural, este pode ser usado como input em cálculos de funcionais da densidade para sistemas heterogêneos. O modelo neural obtido mostrou um desempenho excelente, com desvios menores que ∼ 0,2%, recuperando todos os regimes de densidade, magnetização e uma vasta extensão de regimes de interação, quando comparado com resultados numéricos exatos. Comparado à funcionais analíticos, o modelo neural é mais preciso em todos os regimes de parâmetros, especialmente no regime de fraca interação, onde o funcional analítico mais recente apresenta um grande desvio: ∼ 7%, contra ∼ 0,1% para o nosso modelo neural. Aplicado em aproximações de densidade local para cálculos de DFT para cadeias finitas e com heterogeneidades, como impurezas localizadas e potenciais confinantes, nosso modelo neural se mostrou uma alternativa confiável e usando apenas uma fração dos recursos computacionais de outros tratamentos numéricos.