Semigrupos de operadores lineares limitados: soluções Mild e Weak

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Amaral, Jhony Sá do [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/86518
Resumo: SejamAum operador fechado e densamente definido em um espa¸co de BanachX ef∈L 1 ([0,τ];X). O objetivo deste trabalho e apresentar uma condição necessária e suficiente para a existência de solução weak, dada por J. Ball, do problema { d dt u(t) = Au(t) +f(t), t > 0 u(0) = x. Neste caso, a solução weak coincide com a solução mild (dada pela Fórmula da Variação das Constantes). Como aplicação, estudaremos um problema de valor inicial e de fronteira para equações parabólicas de segunda ordem e concluiremos que sua solução fraca, no sentido usual de EDP’s, coincide com a solução mild do problema de Cauchy abstrato associado