Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Amaral, Jhony Sá do [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/86518
|
Resumo: |
SejamAum operador fechado e densamente definido em um espa¸co de BanachX ef∈L 1 ([0,τ];X). O objetivo deste trabalho e apresentar uma condição necessária e suficiente para a existência de solução weak, dada por J. Ball, do problema { d dt u(t) = Au(t) +f(t), t > 0 u(0) = x. Neste caso, a solução weak coincide com a solução mild (dada pela Fórmula da Variação das Constantes). Como aplicação, estudaremos um problema de valor inicial e de fronteira para equações parabólicas de segunda ordem e concluiremos que sua solução fraca, no sentido usual de EDP’s, coincide com a solução mild do problema de Cauchy abstrato associado |