Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Romero, João Henrique Saska [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/150013
|
Resumo: |
O desafio da Química no século XXI é a obtenção de materiais promissores em aplicações e perspectivas inovadoras. Um ótimo candidato para estudos específicos é a síntese de materiais luminescentes bidimensionais. Entre as matrizes bidimensionais disponíveis, pode-se destacar os Hidróxidos Duplos Lamelares (HDLs) sintetizados no laboratório por rotas simples e de baixo custo, que têm como fórmula geral [M2+(1-x)M'3+x(OH)2](An-)x/n.zH2O (M, M' = íons metálicos que constituem as lamelas, e An- = ânion interlamelar). Preparou-se as amostras pelo método de coprecipitação e troca iônica. Na primeira etapa do trabalho otimizou-se os parâmetros de síntese. Após, obteve-se as amostras [Zn2Aℓ1-xEux(OH)6]A·zH2O-HDL (A = NO3- ou Cℓ- e x = 0,1 ou 1 ou 5 ou 10% em mol) e a fase formada é de HDL, conforme dados de XRD. O perfil de luminescência indica sítios de baixa simetria, emissão com alta pureza de cor e, que alta concentração de grupos –OH intensifica os processos não-radiativos diminuindo a eficiência quântica. Na segunda etapa do trabalho, as amostras [Zn2Aℓ1-xEux(OH)6]A·zH2O-HDL (A = bca (4-ácido-bifenilcarboxílico) ou acac (acetilacetona) ou tta (2-tenoiltrifluoroacetona) obtidas pelo método de coprecipitação não formam a estrutura lamelar. Assim, optou-se pelo método de troca iônica para as amostras [Zn2Aℓ1-xEux(OH)6]A·zH2O-HDL (A = bca, bpdc (4,4-ácido-bifenildicarboxílico), tta e acac e x = 0,1% em mol). A intercalação das espécies aniônicas na matriz HDL nas condições utilizadas é eficiente no caso do bca e é parcial para aos demais. O processo de luminescência é otimizado porque a intercalação dos ligantes orgânicos diminui os processos não-radiativos, e aumenta as possibilidades de transferência de energia. Também, a emissão com excitação por raios X é de maior intensidade. Finalmente, na última etapa, realizou-se a intercalação do complexo NH4[Eu(bca)4], constituído pelo ligante bca que apresentou as melhores propriedades estruturais e luminescentes. Dessa forma, os três sistemas [Zn2Aℓ1-xEux(OH)6]NO3-HDL x = 0,1% (I), [Zn2Aℓ1-xEux(OH)6]bca-HDL x = 0,1% (II) e [Zn2Aℓ(OH)6][Eu(bca)4]-HDL (III) são comparados. Com relação as propriedades luminescentes, os resultados são instigantes. No sistema (I) observa-se emissão com intensidade consideravelmente alta com a concentração em mol de Eu3+ muito pequena, 0,1%. Os grupos –OH são supressores do processo de luminescência, porém essa interferência é superada, até certo limite, com a intercalação do ligante bca (sistema II). No sistema (III) a luminescência é menos intensa que o sistema (II) e mais intensa que o sistema (I) e a simetria diminui em comparação ao complexo livre. A luminescência excitada por raios X ocorre nos três sistemas com diferentes danos por radiação e os sistemas apresentam alta estabilidade quando excitados com radiação ionizante. Enfim, a matriz HDL atua como um ambiente protetor para as espécies aniônicas orgânicas e de coordenação tornando-se candidatos, em potencial, combinando as contrapartes inorgânica (HDL) e orgânica (ligante) para um sistema de emissão promissor. |