Boa colocação das equações de Navier-Stokes em espaços de Morrey

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Amaral, Sabrina Suelen [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/148907
Resumo: In this work we will analyze the Navier-Stokes equations in R^n, (n≤3) and we will show global well-posedness, when the initial velocity belongs to the Morrey space and with a sufficiently small norm. We will also show that if the initial data is a homogeneous function of degree -1, then the mild solutions are self-similar. Moreover, we will present an asymptotic stability result of the mild solutions.