Detalhes bibliográficos
Ano de defesa: |
2004 |
Autor(a) principal: |
Takahashi, Letícia [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/90804
|
Resumo: |
O presente trabalho desenvolve duas abordagens baseadas em sistemas inteligentes, redes neurais artificiais e algoritmos genéticos, para resolver problemas de Despacho Econômico (DE) com a incorporação das características não lineares e pontos de válvula na função custo das unidades geradoras em sistemas de geração. Os algoritmos de otimização convencionais têm apresentado problemas para resolver o DE nos casos em que as funções envolvidas apresentam características de não convexidade e/ou não diferenciabilidade. As abordagens neurais, mas especificamente a rede de Hopfield, mostram-se como ferramentas adequadas no estudo do DE quando funções objetivo não convexas são estudadas. Na Rede de Hopfield Modificada (RHM) aqui analisada, alguns problemas rotineiramente encontrados em outras abordagens neurais, tais como soluções infactíveis e a não convergência aos pontos de equilíbrio (que representam uma solução para o sistema), são tratados de forma eficiente... |