Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Santos, Letícia Bernabé |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/202360
|
Resumo: |
A utilização de técnicas de sensoriamento remoto teve expressivo aumento na agricultura nos últimos anos para avaliar diferentes estresses em culturas. Contudo, ainda são poucos trabalhos que avaliaram a viabilidade na identificação de nematoides. A atual amostragem de nematoides é intensiva em tempo e trabalho e não representa a variabilidade da infestação em todo o campo, dificultando a previsão precisa e o manejo. Portanto, foram desenvolvidos trabalhos visando verificar o potencial uso do sensoriamento aéreo na identificação de sintomas da ocorrência de nematoides na cultura da soja. No primeiro capítulo desta dissertação encontra-se a revisão de literatura contendo tópicos específicos relacionados ao tema central. No segundo, foi avaliada a variabilidade da ocorrência de nematoides em dois campos de produção da cultura da soja e o efeito da área de infestação em relação ao centro da reboleira (dentro, extremidade ou fora), assim como o comportamento multiespectral desses locais. Observou-se que as bandas do vermelho e NIR tiveram comportamento similar nas duas áreas avaliadas e foram capazes de se diferenciar em relação à localização na reboleira. No terceiro capítulo, o objetivo foi determinar a relação bivariada entre bandas espectrais individuais e índices de vegetação (IVs), todos relativos à condição da soja (plantas infectadas versus não infectadas). Utilizamos três algoritmos (Logistic Regression - LR, Random Forest – RF, Conditional Inference Tree – CIT) com três opções para entrada de dados: apenas bandas (modelo reduzido), apenas IVs e bandas mais IVs (modelo completo) para classificar as plantas. Os resultados demonstram a capacidade de se utilizar dados multiespectrais para distinguir plantas de soja infectadas por nematoides e não infectadas, utilizando sensoriamento aéreo combinado com aprendizado de máquina. No quarto capítulo, tem-se as considerações finais com os principais resultados, fatores limitantes, recomendações e os próximos passos da pesquisa. |