Aplicação do processo de descoberta de conhecimento em banco de dados acadêmico utilizando as tarefas de agrupamento e classificação

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Asseiss, Maraísa da Silva Guerra [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/151251
Resumo: Nos últimos anos a quantidade de dados armazenados diarimente em empresas e instituições aumentou consideravelmente e um dos motivos que contribuiu para isso é a crescente importân- cia dada à informação. De forma geral, esses dados são meramente armazenados e, portanto, subutilizados pelos seus detentores, enquanto poderiam ser estudados a fim de obter novos co- nhecimentos, informações e relacionamentos. Neste contexto, surge o processo de descoberta de conhecimento em banco de dados. Este trabalho apresenta uma introdução a banco de dados, uma revisão bibliográfica sobre o processo de descoberta de conhecimento em banco de dados, a descrição de cada etapa deste processo, uma explanação sobre as tarefas de agrupamento e classificação, além de resumir brevemente as técnicas de particionamento e árvore de decisão. É exposto um estudo sobre o sistema Weka, em que apresenta-se conceitos, funcionalidades e exemplifica-se diversas formas de utilização do sistema. O objetivo principal deste trabalho é propor uma metodologia para descoberta de novos conhecimentos em bancos de dados acadê- micos baseada no processo de descoberta de conhecimento em banco de dados, sendo esta uma metodologia mais simplificada e de execução mais direcionada. Como parte da metodologia este trabalho contribui ainda com uma aplicação desenvolvida em Python como forma de apoio a etapas da metodologia. A metodologia proposta conta com a ferramenta Weka para execução dos algoritmos de data mining e prevê a execução das tarefas de agrupamento e classifica- ção. Por fim o trabalho retrata dois estudos de caso envolvendo bancos de dados acadêmicos reais e a execução de todas as etapas da metodologia proposta, com a utilização do sistema Weka. Os estudos de caso abordam as tarefas de agrupamento e classificação e as técnicas de particionamento e árvores de decisão, com a utilização dos algoritmos SimpleKMeans e J4.8, respectivamente. Os resultados obtidos através dos estudos mostram que a metodologia pro- posta é capaz de gerar conhecimentos novos e úteis, tanto na análise de dados de desempenho acadêmico quanto na análise de dados socioeconômicos dos alunos.