Um método para detecção e classificação de curtos-circuitos em redes de distribuição de energia elétrica baseado na transformada de Fourier e em redes neurais artificiais

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Matos, Élito dos Reis [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/87050
Resumo: Neste trabalho apresenta-se uma Metodologia para Detecção e Classificação de Curtos-Circuitos em alimentadores de Sistemas de Distribuição de Energia Elétrica fundamentada na análise de registros oscilográficos através da DFT (Discrete Fourier Transform) e de RNAs (Redes Neurais Artificiais). Sua aplicação pressupõe a disponibilidade de registros de oscilografia digital das correntes nas três fases do alimentador, monitoradas apenas na saída da subestação. A caracterização de cada tipo de curto-circuito é obtida mediante a análise do comportamento dinâmico das correntes de fase durante o período transitório das faltas e a detecção e classificação dos curtos-circuitos são efetuadas por meio de um banco de RNAs acíclicas, do tipo perceptrons, de múltiplas camadas. Um modelo de um alimentador real de Sistema de Distribuição de grande porte, composto por 836 barras, foi utilizado na obtenção dos dados referentes aos curtos-circuitos, com simulações via software ATP-EMTP (Alternative Transients Program - Electromagnetic Transients Program). O método foi implementado e testado utilizando-se o software MATLAB®. Como resultado tem-se uma metodologia de formulação simples que apresenta bom desempenho, é de fácil implementação, apresenta baixa carga computacional e gera resultados altamente satisfatórios