Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Rodrigues, Angela Pereira [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/91774
|
Resumo: |
O objetivo deste trabalho é, em um primeiro momento, fazer um estudo detalhado sobre quantificadores, os quais são estudados desde Aristóteles [384-322 a. C.]. Apresentamos algumas concepções sobre quantificadores generalizados, a saber, a concepção de Mostowski (1957), criada com o intuito de formalizar alguns conceitos matemáticos, e a concepção de Barwise e Cooper (1981), desenvolvida para tentar aproximar a lógica da linguagem natural. Com este estudo, concluímos que não há uma definição geral de quantificadores e, por isso, trabalhos como o de Sette, Carnielli e Veloso (1999), no qual introduziram a Lógica do Ultrafiltro, são importantes. A Lógica do Ultrafiltro estende a lógica clássica de primeira ordem por meio do acréscimo de um novo quantificador, o qual é chamado de quantificador ‘quase sempre’. Assim, em um segundo momento, formalizamos algebricamente este novo quantificador introduzido pela Lógica do Ultrafiltro. Introduzimos a lógica proposicional do ‘quase sempre’, que estende o cálculo proposicional clássico pela adição de um novo operador, em um sistema hilbertiano, e depois em um sistema de cálculo de sequentes |