Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Lopes, Juliana Feletto Silveira Costa |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/214177
|
Resumo: |
Filmes do tipo a-C:H:Si:O, onde a indica amorfo, têm potencial para aplicações tribológicas e apresentam boa estabilidade térmica e adesão a diversos substratos. Filmes a-C:H:Si:N e a-Si:N:H são úteis como revestimentos duros e camadas isolantes em transistores de filmes finos, respectivamente. Materiais similares, dos tipos a-C:H:Si:O:N e a-C:H:Si:F:N, obtidos por Deposição à Vapor Químico Assistido por Plasma ou PECVD (do inglês Plasma Enhanced Chemical Vapor Deposition) foram estudados neste trabalho, e a influência da composição e estrutura química dos filmes nas suas propriedades ópticas e mecânicas foi delineada. Os filmes finos examinados neste estudo são complexos, contendo pelo menos cinco elementos em estequiometrias diferentes. Suas estruturas químicas também variam, dependendo dos parâmetros de deposição, como os fluxos dos gases, a potência aplicada e a posição dos substratos no reator. Filmes a-C:H:Si:O:N foram depositados a partir de hexametildissiloxano (HMDSO), oxigênio (O2) e nitrogênio (N2). A pressão do HMDSO foi mantida em 60 mTorr, assim como a pressão parcial total de O2 e N2. Filmes a-C:H:Si:F:N foram depositados a partir de tetrametilsilano (TMS), hexafluoreto de enxofre (SF6) e N2. A pressão do TMS foi mantida em 96 mTorr, e a pressão parcial total dos outros gases foi de 24 mTorr. A espessura e a rugosidade foram medidas por perfilometria. Filmes com 6 mTorr de O2 apresentaram taxas de deposição de 27 nm/min, e aqueles com 2,4 mTorr de SF6, taxas de 19 nm/min. A morfologia superficial foi examinada por Microscopia Eletrônica de Varredura (MEV) e as concentrações dos elementos foram medidas por Espectroscopia por Dispersão de Energia de Raios-X (EDS). O aumento na pressão parcial de O2 levou à diminuição da concentração atômica de carbono, enquanto com a introdução de SF6 no sistema, a concentração de carbono aumentou. Espectroscopia de Transmitância no Infravermelho (FTIR) foi empregada para identificar os grupos químicos presentes nos filmes depositados. A detecção de estruturas como Si-O-C e Si-N-Si indicaram a fragmentação de moléculas de HMDSO e a incorporação de nitrogênio no material depositado. A fragmentação de moléculas de TMS resultou na presença de grupos Si-CH3. Através da goniometria foram observados ângulos de contato de gotas de água entre 75 e 95° nos filmes a-C:H:Si:O:N, e o aumento aconteceu de acordo com a concentração de carbono. Nos filmes fluorados, houve diminuição do ângulo de contato com o aumento da pressão de SF6. As propriedades ópticas foram estimadas a partir dos espectros obtidos por Espectroscopia no Ultravioleta-Visível-Infravermelho Próximo (UV-Vis). Índices de refração relativamente baixos foram identificados, entre 1,48 e 1,61, sendo pouco maiores para os filmes com F. O gap óptico também foi maior nos filmes fluorados, com valores até 4,07 eV. As propriedades mecânicas foram obtidas por nanoindentação. Os filmes depositados com 6 mTorr de O2 apresentaram a melhor combinação de propriedades mecânicas, com elevada dureza (7 GPa) e o módulo de Young reduzido (48 GPa). Já as propriedades mecânicas diminuíram consideravelmente com a introdução de SF6 no sistema, com durezas em torno de 1 GPa, módulos de Young entre 15 e 30 GPa e rigidez entre 8 e 13 µN/nm. |