Efeito do potencial de óxido-redução na biolixiviação da calcopirita

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Santos, Ana Laura Araújo [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/110371
Resumo: Natural sources of sulfide ores come depleting rapidly due to the demand for metal goods industries in production and consumption. Copper is a metal of greater economic interest. About 70% of this metal is found in nature in the form of chalcopyrite (CuFeS2), however it is the mineral that present a major limitations in its extraction. One of the extraction processes is bioleaching, which uses microorganisms capable of promoting the solubilization of metals by metal sulfides oxidation and presents advantages over the common techniques used, mainly for economic and environmental nature. In this context, the present work was carrying out to evaluate the influence of the redox potential in the solubilization of copper from chalcopyrite. For this, ferrous ions oxidation tests were conducted in the presence and absence of the mineral. The bacterium used in the tests was Acidithiobacillus ferrooxidans - LR, the acidophilic species most studied and most commonly found in mine environments. A sample of chalcopyrite from La Chorrera, Colombia, was analyzed by X-ray diffraction (XRD) and showed the dominant presence of chalcopyrite. Ferrous ions oxidation tests were carried out in shaken flasks at 150 rpm, at 30 ºC using different concentrations of ferrous ions (100, 200, and 300 mmol L-1) in T&K medium. The systems were supplied with 2,5% (w/v) of chalcopyrite and 5% (v/v) of A. ferrooxidans fresh inoculum. At the abiotic conditions, the redox potential achieved 420 mV (Ag|AgCl|KCl(sat)) in all ferrous ions concentrations. Besides, these systems showed the highest copper recovery concentrations, such 73%, 90% and 78%, respectively, after 100 days of testing. However, the bacterial systems showed a low copper recovery, about 17% in a redox potential of 610 mV (Ag|AgCl|KCl(sat)). The solid residues were evaluated by XRD and showed, at abiotic conditions the formation of elemental sulfur, jarositas and a significant decrease in chalcopyrite’s...