Análise não linear de chapas através de uma formulação do método dos elementos de contorno com convergência quadrática

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Dóro, Vinício da Cunha [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/126373
http://www.athena.biblioteca.unesp.br/exlibris/bd/cathedra/13-08-2015/000844363.pdf
Resumo: In this paper the linear formulation of the boundary element method (BEM) for analyzing the stretching plate problem written in terms of displacements and tractions in the normal and tangential directions to the boundary has been developed. The integral equation of displacement is derived from Betti's reciprocity theorem, considering constant thickness on the plate. Then the BEM nonlinear formulation has been obtained by considering an initial (or inelastic) force field over the plate domain, requiring therefore the plate domain discretization into cells. The nonlinear solution is obtained by an implicit formulation, where the strains correction to be computed for each iteration is obtained by considering the consistent tangent operator, leading to a quadratic convergence rate in the iterative procedure required to achieve the plate equilibrium. In the numerical examples, the Von Mises criterion has been adopted to model the material behavior, showing the quadratic convergence rate. Besides different discratizations have been analyzed in order to show as well the results convergence