Construção generalizada de hierarquias Tzitzeica/Bullough–Dodd para álgebras A_2^(2r)

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Adans, Ysla França
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/243678
Resumo: Uma estrutura de Lie algébrica graduada juntamente com uma representação de curvatura zero tem um papel fundamental na construção sistemática de hierarquias integráveis. Como um exemplo de construção explícito, a álgebra afim $A_1$ gera a hierarquia mKdV que contém as conhecidas equações sinh(sine)-Gordon e mKdV. Neste trabalho, expandimos esta construção sistemática para uma classe de álgebras, as álgebras afins twisted $A_{2r}^{(2)}$. Exploramos a álgebra $A_2^{(2)}$ cujo tempo relativístico leva ao modelo Tzitzeica (ou Bullough-Dodd) usando um processo chamado folding, que consiste na aplicação de um automorfismo a álgebra $A_2^{(1)}$. Usando a representação da curvatura nula, apresentamos explicitamente a hierarquia $A_2^{(2)}$ e $A_{4}^{(2)}$ e usamos a álgebra afim para construir duas sub-hierarquias, uma associada aos fluxos temporais positivos e outra aos fluxos temporais negativos. Além disso, utilizamos o método de Dressing para obter as soluções soliton usando o operador vértice para essas hierarquias juntamente com o método Hirota.