Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Silva, Murilo Alexandre Garcia |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/243145
|
Resumo: |
Em nanomateriais, sólidos e átomos frios, uma das propriedades quânticas que se destacam, tanto fundamentalmente quanto do ponto de vista de futuras aplicações, é o emaranhamento quântico. Processos quânticos envolvendo estados emaranhados têm recebido grande atenção, tanto em computação, criptografa e teletransporte quânticos, quanto em áreas como nanofísica, nanobiologia e spintrônica. Emaranhamento também tem sido usado para caracterizar o fenômeno de localização em sistemas metálicos. Quando um metal é exposto à desordem, ou seja, a uma distribuição aleatória de impurezas, é possível que ocorra uma transição de fase quântica e o metal se torne um isolante. Essa transição metal-isolante induzida pela desordem é chamada de localização de Anderson, dada a localização do estado quântico do sistema. Estados quânticos localizados são identifcados por uma redução substancial do emaranhamento naquele regime de parâmetros em torno do valor crítico da transição. Além das várias formas de simular a desordem, podemos também explorar várias formas de trabalhar com o emaranhamento. Podemos obter o grau de emaranhamento via média artimética ou média geométrica e observar que ambos apresentam resultados diferentes nos fenômenos de transições de fase quânticas supracitados. Além disso, a forma de implementar a desordem também influencia no comportamento de tais fenômenos. |