Avaliação Mecânica e Microestrutural da liga de alumínio AA3104 empregada na indústria de fabricação de latas laminada à frio com e sem interpasses.

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Calçada, Maurício Vieira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/153489
Resumo: Os fabricantes de latas vêm se tornando cada vez mais exigentes na qualidade e propriedades dos materiais utilizados na confecção de seus produtos. Um dos metais mais usados na indústria de manufatura de componentes obtidos através de estampagem e estiramento, como na fabricação de corpo de latas de bebidas, trata-se da liga de Alumínio AA3104. Isto se deve às suas propriedades mecânicas, estampabilidade, entre outra. Ela pertence ao grupo 3XXX, sendo que seu principal elemento de liga é o manganês (em pequenas quantidades / teores). Trata-se de uma liga não tratável termicamente, sendo que suas propriedades mecânicas são melhoradas a partir da formação de solução sólida e / ou deformação à frio. Desta forma, o presente estudo teve como objetivo avaliar de maneira detalhada a influência de duas diferentes condições de laminação à frio sobre o comportamento mecânico e microestrutural da liga de Alumínio AA3104: laminação à frio com tempo de resfriamento intermediário e sem tempo de resfriamento intermediário entre passes. A análise mecânica, por meio do Ensaio de Tração, mostrou que os materiais laminados com tempo de resfriamento intermediário obtiveram maiores valores de Limite de Escoamento (283,1 MPa) e Limite de Resistência a Tração (309,3 MPa) do que aqueles materiais laminados sem este tempo de resfriamento intermediário (273,2 e 300,0 MPa, respectivamente). Isto foi justificado pelo aumento da quantidade de partículas de segunda fase precipitados na matriz da liga, que dificultou a movimentação de discordâncias, tornando o material mais resistente.