Método de otimização determinística e fractais aplicado à determinação de múltiplos pontos de mínimo em problemas de otimização não linear

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Hombo, Ernesto Lucanga
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/250642
Resumo: Neste trabalho propõe-se uma abordagem determinística baseada no algoritmo de otimização e caos (AOC) e em métodos de gradientes de otimização via teoria de Julia, para a determinação de múltiplos pontos de ótimos locais em problemas de otimização multimodais com funções objetivo não lineares e não convexas. O método é testado em problemas específicos, como o problema de Despacho Econômico (PDE) com carregamento de pontos de válvula, onde a função objetivo, além das características de não linearidade e não convexidade, é não diferenciável nesses pontos. Para viabilizar a aplicação dos métodos mencionados é utilizada a função de suavização hiperbólica, que aproxima a função valor absoluto senoidal da função de custos do PDE, tornando-a diferenciável. O método é avaliado e, entre os múltiplos pontos de mínimo encontrados no PDE e em outro problema multimodal testado, são determinados o pior, o intermediário e o melhor ponto de mínimo que minimizam a função objetivo desses problemas. Esses resultados fornecem uma visão mais abrangente e precisa das soluções encontradas.