Uma contribuição para a otimização de portfólios de séries heteroscedásticas usando projeto de experimento de misturas: uma abordagem do desirability aplicada a modelos

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Mendes, Ronã Rinston Amaury [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/103053
Resumo: Esta tese apresenta uma proposta inovadora com base no DOE (Design of Experiments) para tratar a otimização de portfólios multiobjetivos utilizando uma abordagem híbrida que combina arranjos de experimentos do tipo Misturas (Mixture Design of Experiments – MDE) e funções Desirability para se encontrar um portfólio ótimo modelado pelo algoritmo ARMA–GARCH. Neste tipo de estratégia experimental, as proporções investidas em cada ativo do portfólio são tratadas como fatores de um arranjo de misturas adequado para o tratamento de portfólios em geral. Ao invés de utilizar a tradicional programação matemática de portfólios de média variância (MVP), o conceito da função desirability é aqui utilizado para resolver problemas de otimização não linear multiobjetiva para a predição de valores condicionais de retorno (média), risco (variância) e entropia com suas respectivas superfícies de resposta estimadas pelo MDE. Para evitar a falta de diversificação dos portfólios, o princípio da Máxima Entropia de Shannon é incorporado ao modelo de otimização. O método fatorial de ajuste da função desirability proposto nesta tese aperfeiçoa o desempenho do algoritmo desirability conduzindo a uma eficiente alocação dos ativos no portfólio. Esta abordagem também permite a inclusão da aversão ao risco na rotina de otimização e engloba as interações (efeitos não lineares) dos efeitos entre diversos ativos enquanto reduz o esforço computacional requerido para resolver o problema de otimização não linear restrito. Para avaliar a viabilidade proposta, o método foi testado com dados reais de séries semanais do mercado mundial de preços spot de petróleo bruto. Os resultados numéricos demonstram a adequação da proposta