Sistema embarcado empregado no reconhecimento de atividades humanas

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Ferreira, Willian de Assis Pedrobon [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/151732
Resumo: A utilização de sensores em ambientes inteligentes é fundamental para supervisionar as atividades dos seres humanos. No reconhecimento de atividades humanas, ou HAR (Human Activity Recognition), técnicas de supervisionamento são aplicadas para identificar as atividades realizadas em diversas aplicações, como no esporte e no acompanhamento de pessoas com necessidades especiais. O Sistema de Reconhecimento de Atividades Humanas (SIRAH) é empregado no reconhecimento de atividades humanas, utilizando um acelerômetro localizado na cintura da pessoa monitorada e uma Rede Neural Artificial para classificar sete atividades: em pé, deitado, sentado, caminhar, correr, sentar e levantar. Originalmente implementado no software MATLAB, realizava classificações offline em que os resultados não eram obtidos durante a execução das atividades. Apresenta-se, neste trabalho, o desenvolvimento de duas versões embarcadas do SIRAH, que executam o algoritmo de classificação durante a prática das atividades monitoradas. A primeira implementação foi efetuada no processador Nios II da Altera, que ofereceu a mesma exatidão do sistema offline com processamento limitado, pois o software consome 673 milissegundos para executar a classificação desejada. Para aprimorar o desempenho, outra versão foi implementada em FPGA utilizando a linguagem de descrição de hardware VHDL. O algoritmo de classificação opera em tempo real e é executado em apenas 236 microssegundos, garantindo total amostragem das acelerações.