Estruturas geômetro-diferenciais na superfície da corda bosônica

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Melo, Édypo Ribeiro de [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/92033
Resumo: Historicamente, as superfícies mínimas foram inicialmente estudadas por Lagrange e Euler no século XVIII. Fisicamente, uma superfície é mínima se ela não pode ser modificada sem consequente aumento de sua área. Tais superfícies desempenham papel fundamental na moderna pesquisa em geometria diferencial. Em física relativística e na teoria de cordas, elas são usadas a fim de descrever a formulação matem´atica de buracos negros e para o estudo de loops de quarks na fronteira do espaço Anti-de-Sitter, sendo estes denominados Wilson loops. Neste trabalho, pretendemos estudar o formalismo necessário para a análise destas superfícies nos espaços Euclideano, Lorentziano e Anti-de-Sitter sob à ótica da teoria de cordas bosônicas